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Setup

On a previous episode

Recall the setup: F/Qp a finite extension, G/F a connected reductive group, µ a
conjugacy class of geometric cocharacters, b ∈ B(G , µ) basic, Gb the associated inner
form.
Recall from Lecture 2: have an explicit Jacquet-Langlands transfer operator

T
Gb→G
b,µ : C(Gb(F )sr//Gb(F ))→ C(G(F )sr//G(F )) given by

[T
Gb→G
b,µ f ](g) = (−1)〈2ρ,µ〉

∑
(g,g′,λ)∈Relb

dimrµ[λ]f (g ′).

Theorem (Lecture 2)

Assume the refined LLC + etc. Let φ be a discrete L-parameter. Then for any
ρ ∈ Πφ(Gb), have an equality

[T
Gb→G
b,µ Θρ](g) =

∑
π∈Πφ(G)

[dimHomSφ (δπ,ρ, rµ)]Θπ(g).

This is half of the puzzle...
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Today’s episode

Recall from Lecture 1 the complex RΓ(G , b, µ)[ρ] appearing in the Kottwitz
conjecture. This is a bounded complex whose cohomologies are finite-length
admissible representations of G(F ).  Can form the finite-length virtual
representation MantG ,b,µ(ρ) =

∑
i (−1)iH i (RΓ(G , b, µ)[ρ]), which then has a

Harish-Chandra character ΘMantG,b,µ(ρ).

Theorem (Today’s main theorem)

We have an equality

ΘMantG,b,µ(ρ)(g) = [T
Gb→G
b,µ Θρ](g)

for any elliptic g ∈ G(F ).

This theorem holds for any finite-length ρ, independent of any knowledge of LLC.
Today: Detailed sketch of the argument.
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Overview

Key steps in the proof:

1 Switch to distributions.

2 Reduction to `-torsion coefficients.

3 Invocation of the Lefschetz-Verdier trace formula.

4 Decoupling the contributions of ρ and Sµ.

5 Explicit calculation of local terms associated with Sµ.

Steps 1. and 2. are preliminary reductions. Steps 3. and 4. are the heart of the
argument. Step 5. can be taken as a black box.

David Hansen Sketch of the main geometric argument in HKW 4 / 18



Setup

Step 1: Switch to distributions

Recall from Lecture 3: For Λ any Z[1/p]-algebra, can form

Dist(G(F ),Λ)G(F ) = HomG(F )(Cc (G(F ),Λ)⊗Haar(G ,Λ),Λ).

Can also define an elliptic variant

Dist(G(F )ell,Λ)G(F ) = HomG(F )(Cc (G(F )ell,Λ)⊗Haar(G ,Λ),Λ),

so have a restriction map Dist(G(F ),Λ)G(F ) → Dist(G(F )ell,Λ)G(F ).
Any admissible A ∈ D(G(F ),Λ) has a trace distribution
tr.dist(A) ∈ Dist(G(F ),Λ)G(F ). Write tr.distell(A) for its image in
Dist(G(F )ell,Λ)G(F ).

Want to reinterpret T
Gb→G
b,µ in terms of distributions.
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Step 1: Switch to distributions cont’d

Using the geometry of shtuka spaces, we will define a linear map

T
Gb→G
b,µ : Dist(Gb(F )ell,Λ)Gb(F ) → Dist(G(F )ell,Λ)G(F )

such that, if Λ = Q`, the diagram

C(Gb(F )sr//Gb(F )) //

T
Gb→G

b,µ

��

Dist(Gb(F )ell,Λ)

T
Gb→G

b,µ

��
C(G(F )sr//G(F )) // Dist(G(F )ell,Λ)

commutes.  We are reduced (by easy formal arguments) to proving that for all
ρ ∈ IrrQ`

(Gb(F )), there is an equality

T
Gb→G
b,µ (tr.distellρ) = tr.distellRΓ(G , b, µ)[ρ] (†)

in Dist(G(F )ell,Q`)
G(F ).
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Step 2: Reduction to `-torsion coefficients

Need to show: For all ρ ∈ IrrQ`
(Gb(F )), there is an equality

T
Gb→G
b,µ (tr.distellρ) = tr.distellRΓ(G , b, µ)[ρ] (†)

in Dist(G(F )ell,Q`)
G(F ).

Key claim. If the equality (†) holds for all ρ ∈ IrrQ`
(Gb(F )) which admit an invariant

Z`-lattice, then it holds in general.
Sketch. Evaluate both sides of (†) on some φdg ∈ Cc (G(F )ell,Λ)⊗Haar(G),
regarding ρ as variable. LHS can be written as ρ 7→ tr(φ′dg ′|ρ) for some

φ′dg ′ ∈ Cc (Gb(F )ell,Λ)⊗Haar(Gb). (∼ obvious from the definition of T
Gb→G
b,µ .)

RHS can also be written in the form ρ 7→ tr(φ′′dg ′|ρ) for some
φ′′dg ′ ∈ Cc (Gb(F ),Λ)⊗Haar(Gb)! Not obvious; conjectured by Taylor, proved in
HKW.
 RHS-LHS: ρ 7→ tr(φ′′′dg ′|ρ) for some φ′′′, and = 0 by assumption when ρ admits
a lattice.  RHS-LHS = 0 for all ρ. Since φ was arbitrary, this gives what we want.
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Step 2: Reduction to `-torsion coefficients cont’d

By previous slide, reduced to showing: For all ρ ∈ IrrQ`
(Gb(F )) admitting an invariant

lattice, there is an equality

T
Gb→G
b,µ (tr.distellρ) = tr.distellRΓ(G , b, µ)[ρ] (†)

in Dist(G(F )ell,Q`)
G(F ).

Now exploit the fact that RΓ(G , b, µ)[−], T
Gb→G
b,µ (−), tr.dist, etc. can be defined

with coefficients in any Z`-algebra Λ, compatibly with extension of scalars. This
reduces our goal to:
For Λ = Z`/`

n and any admissible ρ ∈ D(Gb(F ),Λ), we have an equality

T
Gb→G
b,µ (tr.distellρ) = tr.distellRΓ(G , b, µ)[ρ]

in Dist(G(F )ell,Λ)G(F ).
Now we are ready to use the trace formula.
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Interlude: Definition of the distributional transfer

To keep going, we need some p-adic geometry. Recall the usual diagram of diamonds
over Cp :

ShtG ,µ,b 	 Gb(F )× G(F )

πGM

uukkkk
kkkk

kkkk
kkk πHT

))TTT
TTTT

TTTT
TTTT

GrG ,≤µ 	 Gb(F ) GrG ,≤−µ 	 G(F )

From this we get some locally profinite sets:
Xb = {(x , g ′) ∈ GrG ,≤µ(Cp)× Gb(F )ell | xg ′ = x} 	 Gb(F ),
X1 = {(x , g) ∈ GrG ,≤−µ(Cp)× G(F )ell | xg = x} 	 G(F ),

X̃ = {(x , g ′, g) ∈ ShtG ,µ,b(Cp)×Gb(F )ell ×G(F )ell | x .(g ′, g) = x} 	 Gb(F )×G(F ).
These sit in a diagram

Xb

q1

��

X̃
p1oo p2 // X1

q2

��
Gb(F )ell G(F )ell

where q1 and q2 are finite étale, p1 is a G(F )-torsor, and p2 is a Gb(F )-torsor.
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Interlude cont’d

On X̃ we have the (locally constant Gb × G -invariant Z-valued) function Kµ sending
(x , g , g ′) to (−1)〈2ρ,µ〉 dim rµ[λx ], where λx measures the relative position of the
modification parametrized by x .

Definition. T
Gb→G
b,µ is defined as the composition

Dist(Gb(F )ell,Λ)Gb(F ) ∼= H0([Gb(F )ell/Gb(F )],K[Gb(F )ell/Gb(F )])

(q1/Gb(F ))∗−→ H0([Xb/Gb(F )],K[Xb/Gb(F )])

∼= H0([X̃/Gb(F )× G(F )],K[X̃/Gb(F )×G(F )])

·Kµ−→ H0([X̃/Gb(F )× G(F )],K[X̃/Gb(F )×G(F )])

∼= H0([X1/G(F )],K[X1/G(F )])

(q2/G(F ))∗−→ H0([G(F )ell/G(F )],K[G(F )ell/G(F )])

∼= Dist(G(F )ell,Λ)G(F ).

Commutation of the square on slide no. 6 follows from this definition by a direct

calculation. One key point: adjointness of T
Gb→G
b,µ and T

G→Gb
b,µ ) w/r/t stable Weyl

integration pairing, as in Lecture 2).
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Step 3: Invocation of the trace formula

Recall our goal: we want to prove T
Gb→G
b,µ (tr.distellρ) = tr.distellRΓ(G , b, µ)[ρ] for

any admissible ρ ∈ D(Gb(F ),Z`/`
n). Let’s contemplate the diagram

Bun1
G = [∗/G(F )]

i1 // BunG

Hck1
G ,≤µ

j //

h′2

OO

HckG ,≤µ

h1

��

h2

OO

ε // [GrG ,≤µ/L
+
n G ]

��
BunbG = [∗/Gb(F )]

ib // BunG // [∗/L+
n G ]

of small v-stacks over ∗ = SpdCp . Here L+
n G = G(B+

dR/Fil
n) for some large n, the

two squares are Cartesian, h1, h2 and h′2 are proper, and ib, i1 and j are open
immersions.
First key fact: Can write RΓ(G , b, µ)[ρ] = h′2∗j

∗(ε∗Sµ ⊗ h∗1 ib∗ρ). Six functor
calisthenics. Here Sµ ∈ Dét([GrG ,≤µ/L

+
n G ],Z`) comes from geometric Satake.

Next key fact: Various things are ULA. In particular, ib∗ρ is ULA (for the structure
map) and ε∗Sµ is h1-ULA  ε∗Sµ ⊗ h∗1 ib∗ρ is ULA, and then also j∗(ε∗Sµ ⊗ h∗1 ib∗ρ)
is ULA. In particular, we can contemplate its characteristic class, and the
characteristic class of its proper pushforward by h′2.
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Step 3: Invocation of the trace formula cont’d

From the two Key Facts, we see that we need to understand

tr.distRΓ(G , b, µ)[ρ] = ccBun1
G

(h′2∗j
∗(ε∗Sµ ⊗ h∗1 ib∗ρ)).

NOW WE INVOKE THE TRACE FORMULA: h′2 is proper, so the trace formula (as
described in Lecture 3) says that we have an equality

ccBun1
G

(h′2∗A) = In(h′2)∗ccHck1
G,≤µ

(A)

in H0(In(Bun1
G ),K) ∼= Dist(G(F ),Λ)G(F ) for any ULA sheaf A.

So we want to compute

In(h′2)∗ccHck1
G,≤µ

(j∗(ε∗Sµ ⊗ h∗1 ib∗ρ)).

This is still a complicated piece of data, because the map In(h′2) is rather crazy. But
remember! We only care about the elliptic part tr.distellRΓ(G , b, µ)[ρ], or equivalently
about the restriction of In(h′2)∗ccHck1

G,≤µ
(j∗(ε∗Sµ ⊗ h∗1 ib∗ρ)) to (distributions on) the

open substack In(Bun1
G )ell = [G(F )ell/G(F )] ⊂ [G(F )/G(F )] = In(Bun1

G ).

Miracle: The fiber product In(Hck1
G ,≤µ)ell = In(Bun1

G )ell ×In(Bun1
G

) In(Hck1
G ,≤µ) is

nothing more than [X1/G(F )], and the map In(h′2)ell : In(Hck1
G ,≤µ)ell → In(Bun1

G )ell

identifies with the map q2/G(F ) discussed earlier. In particular, In(h′2)ell is finite étale.

Moreover, the map In(Hck1
G ,≤µ)ell → In(BunG ) induced by h1 ◦ j factors over the

open substack In(BunbG )ell, and agrees with the map q1/Gb(F ) discussed earlier.
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Step 3: Invocation of the trace formula cont’d

To recap: The arguments so far show that

tr.distellRΓ(G , b, µ)[ρ] = In(h′2)ell
∗ ccHck1

G,≤µ
(j∗(ε∗Sµ ⊗ h∗1 ib∗ρ))ell,

where ccHck1
G,≤µ

(j∗(ε∗Sµ ⊗ h∗1 ib∗ρ))ell denotes the restriction of the characteristic

class ccHck1
G,≤µ

(j∗(ε∗Sµ ⊗ h∗1 ib∗ρ)) from In(Hck1
G ,≤µ) to the open substack

In(Hck1
G ,≤µ)ell ∼= [X1/G(F )], and In(h′2)ell = q2/G(F ) as in the definition of T

Gb→G
b,µ .

It remains to match the rest of (the RHS of) this formula with the remaining pieces of

the definition of T
Gb→G
b,µ .

Rough idea for how this goes: We will decompose ccHck1
G,≤µ

(j∗(ε∗Sµ ⊗ h∗1 ib∗ρ)), by

some kind of Künneth formula, into separate contributions from ρ and Sµ. Then on
the elliptic locus, ρ will contribute (q1/Gb(F ))∗tr.distellρ (using that
In(h1 ◦ j)ell = q1/Gb(F ) as mentioned on the previous slide), and Sµ will contribute
the kernel function Kµ.
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Step 4: Decoupling ρ and Sµ

Setup. Consider a Cartesian diagram of small v-stacks

Y

p1

��

p2 // X2

��
X1

// S

smooth-locally nice over ∗ = SpdCp . Suppose Ai ∈ Dét(Xi ,Λ) is ULA.

Proposition (Exceptional Künneth formula)

In the above setup, suppose that S → ∗ and ∆ : S → S ×∗ S are both
cohomologically smooth. Then there is a canonical map

κ : H0(In(X1),K)⊗ H0(In(X2),K)→ H0(In(Y ),K),

the sheaf p∗1 A1 ⊗ p∗2 A2 is ULA, and we have an equality

ccY (p∗1 A1 ⊗ p∗2 A2) = κ(ccX1
(A1)⊗ ccX2

(A2)).
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Step 4: Decoupling cont’d

When S = ∗ this is an easy exercise, but the general case is much less obvious. The
hypothesis on S is very strong, but is satisfied if S = [∗/G] for some cohomologically
smooth group diamond G.
Essence of step 4: Apply the above proposition to the diagram

HckG ,≤µ

h1

��

ε // [GrG ,≤µ/L
+
n G ]

��
BunG // [∗/L+

n G ]

choosing the sheaves to be ib∗ρ and Sµ.
Modulo actually understanding what the map κ does in our specific situation, this
(finally!) reduces us to computing cc[GrG,≤µ/L

+
n G ](Sµ).
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Step 5: Local terms on the BdR-affine Grassmannian

Repeat: We want to compute cc[GrG,≤µ/L
+
n G ](Sµ).

Without further qualification this is a meaningless task, since the whole inertia stack
In([GrG ,≤µ/L

+
n G ]) is complicated, and the space of distributions on it is intractable.

However, there is a large open substack which is purely ”combinatorial”, and we only
need to understand the situation after restriction to this substack.
More precisely, let L+,sr

n G be the (open conjugation-invariant) preimage of G sr ⊂ G
under the θ-map L+

n G → G , and let In([GrG ,≤µ/L
+
n G ])sr be the preimage of the open

substack [L+,sr
n G/L+

n G ] ⊂ In([∗/L+
n G ]) along the evident map. Then

|In([GrG ,≤µ/L
+
n G ])sr| ∼= X∗(T )≤µ/W and

H0(In([GrG ,≤µ/L
+
n G ])sr,K) ∼= C(X∗(T )≤µ,Λ)W .

Proposition

Under the previous identification, we have an equality

cc[GrG,≤µ/L
+
n G ](Sµ)sr : λ 7→ (−1)〈2ρ,µ〉 dim rµ[λ].

This is exactly what we want to see!
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Step 5: Local terms on the BdR-affine Grassmannian, cont’d

After a nontrivial unwinding, this reduces to the following stack-free statement.
Let V ∈ Rep(ĜΛ) be any representation, corresponding to some object

SV ∈ Dét(GrG ,Λ)L
+G in the Satake category. Let g ∈ G(F ) be any strongly regular

semisimple element.

Proposition

Under the assumptions above, g has only isolated fixed points on GrG , and for any
such fixed point x there is an equality

locx (g , SV ) = (−1)〈2ρ,λx 〉 dimV [λx ].

Here λx ∈ X∗(T )/W records which open Schubert cell of GrG contains x, and V [λx ]
denotes the λx -weight space of V .

In the more familiar setting of complex analytic / schematic / Witt vector affine
Grassmannians, this proposition can be deduced from a recent theorem of Varshavsky
(using a nontrivial global-to-local argument with the weight functors in geometric
Satake). In the BdR setting, a direct attack seems impossible. Instead, we degenerate
from the BdR-affine Grassmannian to the Witt vector affine Grassmannian, using a
suitable Beilinson-Drinfeld affine Grassmannian over OCp as an intermediary.
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Thank you for listening!
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